Review Set 2

Kevin Leach

September 21, 2023

Cool Syntax

. Consider the Cool program below

1 class Main inherits IO0 {

2 main () : Object {

3 out_string ((new Language).___ _ __ _ _ _ _ _ _ _ oo el______)
4 3

5 };

6

7 class Language {

8 newlLanguage (x:Int) : Language {
9 if x = 0 then

10 new English

11 else

12 (x complete this *)

13

14

15

16

17

18 fi

19 3

20 greeting () : String {""};

21 };

22

23 class English inherits Language {
24 greeting () : String {"hello"};
25 };

26

27 class Spanish inherits Language {
28 greeting () : String {"hola"};
29 };

30

31 class Chinese inherits Language {
32 greeting () : String {"nihao"};
33 };

. Complete the newLanguage method so that it returns a new Spanish object if x is 1 and a new Chinese
object otherwise.

. Complete the main method so that it uses the greeting() method to output ”hello” if given 0 from
stdin, "hola” if 1, and "nihao” otherwise.

2 Regular Expressions
1. Write a regular expression over the alphabet ¥ = {a, b, ¢,d} for the language of strings that have a

1+ 3n occurrences of a followed by any combination of even numbers of occurrences of b or ¢, followed
by one or more occurrences of d.

2. Draw a DFA that accepts the language from the above problem.

3 Context-Free Grammars and Parsing

1. ALWAYS, SOMETIMES, NEVER. If a grammar g cannot be LL(1) parsed, then L(g) is not regular.

2. ALWAYS, SOMETIMES, NEVER. If a recursive descent parser can parse a grammar g, the L(G) is
LL(1).

A LR parsing DFA is shown below.

State 0:
S—eE
E—-eE+ (E)
E E— e x X
State 1: State 2:
S—E e E—x e
E—-Ee+ (E) On), +, $: reduce E—x o
—+ X
State 3: (State 4:

E-E+ o (E) ——3 ESE+(¢ E)
E-se E+(E)

E— e x
+ E
State 5:) State 6:
E-E+ (E o) » E—-E+ (E) o
E—e E o +(E) On), +, $: reduce ESE + (E) o

. In the table below, show the parsing steps for the string x + (x)

Stack Action Stack Action
ex+ (x)$ Shift x

xe + (x)8 Reduce F —x

e E+ (x)$ shift £

