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Abstract—There is a growing body of malware samples that evade automated analysis and detection tools. Malware may measure
fingerprints (”artifacts”) of the underlying analysis tool or environment, and change their behavior when artifacts are detected. While
analysis tools can mitigate artifacts to reduce exposure, such concealment is expensive. However, not every sample checks for every
type of artifact—analysis efficiency can be improved by mitigating only those artifacts most likely to be used by a sample. Using that
insight, we propose MIMOSA, a system which identifies a small set of ”covering” tool configurations that collectively defeat most
malware samples with increased efficiency. MIMOSA identifies a set of tool configurations which maximize analysis throughput and
detection accuracy while minimizing manual effort, enabling scalable automation for analyzing stealthy malware.
We evaluate our approach against a benchmark of 1535 labeled stealthy malware samples. Our approach increases analysis
throughput over the state of the art on over 95% of these samples. We also investigate cost-benefit tradeoffs between the fraction of
successfully-analyzed samples and computing resources required. MIMOSA provides a practical, tunable method for efficiently
deploying analysis resources.

Index Terms—Malware analysis, covering sets, artifact mitigation
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1 INTRODUCTION

Malware continues to proliferate, significantly eroding user
and corporate privacy and trust in computer systems [34],
[43], [44], [63]. Malwarebytes Threat Landscape reported a
13% increase in malware targeting businesses in 2019 [42].
SonicWall detected around 10 billion malware attacks in
2019 [59]. Although Symantec notes a 61% decrease in the
number of new malware variants between 2017 and 2018,
the distribution of specific samples like Adware/InstallCore
increased 360% from 2018 to 2019 [42], [64]. Keeping abreast
of this large volume of malware requires effective scalable
malware analysis techniques.

Once a malware sample has been detected and ana-
lyzed, automated techniques such as signature matching
can quickly identify other copies. Understanding novel
malware samples, however, requires lengthly analysis using
both automated and manual techniques [23], [73]. Analysts
frequently execute samples under laboratory setups [19],
[68] using virtualization. This includes not only virtual
machine monitors like VMWare [67], Xen [21], and Virtual-
Box [47], but also tools that depend on virtualization such as
Ether [18], HyperDbg [24], or Spider [16]. Executing the mal-
ware sample in a controlled environment allows the analyst
to observe its behavior safely. If malware causes damage,the
damage is limited to the virtualized environment, which can
be destroyed and restarted to analyze subsequent samples.
Virtualization is now a lynchpin of computer security and
analysis applications [?], [5], [30], [38], [51].

As these malware analysis methods have matured, mal-
ware authors have in turn adopted evasive, or stealthy,

techniques to avoid or subvert automated analysis [11],
[61], [62]. Chen et al. [11], for example, reported that 40%
of malware samples hide or reduce malicious behavior
when run in a VM or with a debugger attached. Stealthy
malware techniques include anti-debugging [9], [11], [22],
anti-virtualization [6], [52], and anti-emulation [54]. These
methods detect a particular feature, or artifact, of the analy-
sis environment which allows the malware to determine if it
is being analyzed. When an artifact is detected, the malware
can avoid executing its malicious payload, thereby hiding
its true function from the analyst. Table 1 summarizes
common artifacts, derived from Zhang et al. [74]. Studying
the behavior of stealthy malware requires that the analyst
mitigate the artifacts by configuring the environment in a
way that prevents detection by the malware. Over time,
malware authors have discovered a wide diversity of artifact
types, which has increased the time required to manually
determine the best mitigation strategy for each malware
sample. This process has proven difficult to automate.

Given current trends, we expect that malware authors
will continue discovering new artifacts, forcing analysts to
develop new mitigations, leading to continued escalation of
the complexity and cost of conducting malware analysis.
Balzarotti et al. describe how stealthy malware samples
check for evidence of analyses and behave differently when
they are present [7]. They classify stealthy malware by
running samples under multiple environments and using
the differences between those runs, especially in terms of
patterns of system call execution, to characterize evasive
behavior. For example, if a sample is executed under both
VMWare [67] and VirtualBox [47], and the VMWare instance
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does not exhibit malicious behavior, one can conclude that
the sample detects VMWare-specific artifacts (e.g., [49]).
Many techniques, from machine learning [50] to symbolic
execution and traces [26] to hybrid dynamic analyses [40],
among others, have been proposed to tackle this problem
of environment-aware malware—even as new black hat
approaches for more insidious stealthy evasion (e.g., [45],
[65]) are proposed as well.

This paper presents MIMOSA1 to address the need
for high-throughput, low-overhead automated analysis of
stealthy malware. MIMOSA’s key insight is that any malware
sample is likely to use a small set of artifact mitigation
strategies out of the large set of possible mitigations. We
propose using coverings to find a small set of analysis con-
figurations that collectively cover (mitigate) the techniques
used by most stealthy malware samples while minimizing
the cost of each individual analysis configuration. MIMOSA
can be used as part of an automated malware analysis or
triage system to help detect and understand new stealthy
malicious samples.

We extend the previous state-of-the-art to consider both
the cost and coverage of artifact mitigation strategies. Given
the popularity of stealthy malware and the increasing num-
ber of anti-stealth techniques, the question is no longer
whether or not evasion should be mitigated, but which
set of techniques should be used for a particular sample.
Since samples often use combinations of artifacts to evade
detection [62], this is not a simple decision. First, each
stealth mitigation technique comes with associated costs—
development time, deployment time, CPU time, memory
and disk utilization, runtime overhead, etc.—compared to
a bare-metal or bare-VM setup. These costs are critical
because the rate at which new malware is deployed [66]
combined with the time and resources required to complete
each analysis has led to a situation in which analysis time
can be a bottleneck [10]. Second, some stealth mitigation
techniques supplant or subsume others but with different
costs. For example, an API call can be hooked to read
VMWare-specific registry keys to prevent malware targeting
that registry key from detecting the environment. Such a
strategy is more efficient than using an alternate approach
to hide the registry key.
To summarize, the main contributions of this paper are:

• A new algorithm for identifying a low-cost set of artifact
covering configurations;

• MIMOSA, a system for selecting and deploying covering
combinations of artifact mitigations to maximize analysis
throughput and accuracy;

• An empirical study of 1535 labeled stealthy malware
samples from the wild, demonstrating that MIMOSA
achieves high coverage of stealthy malware and high
automated analysis throughput; and

• Open-source software that provides a unified frame-
work for conducting scalable evasive malware anal-
ysis. We release the codebase of MIMOSA under
the following Github repository for public access:
github.com/AdaptiveComputationLab/MIMOSA.

1. MIMOSA: Malware Instrumentation with Minimized Overhead for
Stealthy Analysis.

2 BACKGROUND

We call malware stealthy if it actively seeks to detect, disable,
or otherwise subvert malware analysis tools. Stealthy mal-
ware operates by checking for signatures, or artifacts, associ-
ated with various analysis tools or techniques. For example,
a malware sample may invoke the isDebuggerPresent
Win32 API call to determine whether a debugger is attached
to the process—if a debugger is attached, the sample may
conclude that an analyst is instrumenting it and change
its behavior accordingly. There are many different types of
artifacts exposed by the wide variety of analysis tools and
frameworks used today. Briefly, stealthy malware samples
use artifacts as heuristics to determine if they are under
analysis, and change their behavior to subvert the tool.

Stealthy, evasive malware has been studied exten-
sively [10], and is of increasing concern in industrial set-
tings, with companies such as Minerva and Lastline mar-
keting solutions for detecting stealthy malware. In addi-
tion, stealth is often a property gained through the use of
packers [1], [2], [55] that can systematically change malware
statically to evade detection and subvert analysis. Thus,
there is a need for defensive methods that can keep up with
the escalating arms race with malware.

An artifact is information about the execution environ-
ment that a malware sample can use to determine if it is
running non-natively. For example, if a malware sample
checks whether a debugger is attached to it, that sample
may behave differently in an attempt to conceal its true
behavior from an analyst using the debugger. For any given
artifact, there can be multiple artifact mitigation strategies for
preventing exposure of the artifact to the sample. Each such
strategy comes with an associated (1) mitigation cost, which
captures overhead, development effort, or other economic
disadvantage, and (2) generality, or artifact coverage, which
is the fraction of stealthy samples defeated by the strategy.

We consider three broad malware analysis methods:
1) manual analysis, in which a human analyst reverse en-

gineers, modifies, and analyzes the sample. This labori-
ous process can take many hours of effort per sample.

2) bare metal analysis, in which the sample is run natively
rather than in a VM and thus exposes no artifacts to the
sample but also incurs risk to the host environment.

3) combined environment analysis, in which the sample is
run in multiple disparate environments so that the
sample is exposed to disjoint sets of artifacts.

In this paper, we focus on the third approach, namely
combined environment analysis. Earlier work [7], [36] used
observed differences between runs in disparate environ-
ments to determine which artifacts are used by a stealthy
malware sample. Historically, however, such approaches
have not involved many analysis environments, instead
focusing on case studies that compare runs between limited
numbers of virtualization environments. Given the growing
number of malware mitigation techniques, there is a need
for techniques that enable fine-grained control over the ar-
tifacts exposed by the analysis environment. By precomput-
ing a set of configurations that can be tested in parallel and
reused for different malware samples, we hypothesize that
MIMOSA will both increase coverage and analysis scalability
of stealthy malware.

https://github.com/AdaptiveComputationLab/MIMOSA
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TABLE 1
Example artifacts used by stealthy malware [74].

Artifact Name Artifact Description

Hardware ID VMs have devices with obvious strings (e.g., “VMWare Hard Drive”) or specific identifiers (e.g., MAC address).
Registry Key Windows VMs have telling registry keys (e.g., unique dates and times associated with VM creation).
CPU behavior VMs may not faithfully reproduce CPU instructions.
Resource constraint Malware analysis VMs may be given sparse resources (e.g., <20GB hard disk)
Timing VMs may not virtualize internal timers, or may incur noticeable overhead
Debugger presence Tools like gdb that instrument samples are detectable
API calls API calls that are hooked for analysis can be detected.
Process names VMs, analysis and monitoring tools have some processes with specific predefined names (e.g., vmtoolsd in VMWare).
HCI check the human interactions with system e.g. mouse and keyboard activity

3 MOTIVATING EXAMPLES

In this section, we consider two artifact families commonly
used by stealthy malware to detect an analysis environment:
debugger-related API calls and hard disk capacity. For each
artifact family, we highlight multiple mitigation strategies
an analyst might use defeat such evasion, and we illustrate
how each strategy can have a different cost and effective-
ness. These tradeoffs motivate MIMOSA’s design.

At one extreme, the analyst could run the sample on
a bare metal machine without virtualization, exposing the
fewest artifacts (high coverage). This strategy has high
cost because it precludes parallel analyses involving multi-
tenant VMs and it can be expensive to recover from the
malware payload. At the other extreme, the analyst might
use a single mitigation strategy (low overhead). Recall that
stealthy malware operates by executing myriad checks for
such artifacts, sometimes six or more [62], so this approach
is likely to have low coverage. Even if the single mitigation
strategy chosen defeats one check, it is unlikely to defeat
all of them. As a third alternative, the analyst could ap-
ply every known mitigation strategy simultaneously. How-
ever, in practice, a single sample rarely checks for the
majority of known artifacts.2 The third alternative is also
not practical because some mitigations are incompatible:
they may require specific VMs or incompatible hardware
configurations, and combining all possible mitigations will
often incur unacceptable overheads. Given a set of available
analysis tools, MIMOSA can produce sets of configurations
that occupy different points in the cost-coverage space.

3.1 Debugger Presence Artifact Family

Some stealthy malware samples explicitly check for the
presence of standard debugging software. Analyzing
stealthy malware requires tools that do not expose re-
lated artifacts to the malware sample under test. In some
cases, this can be trivial. For example, we can mitigate the
isDebuggerPresent API call by hooking it and returning
a spoofed value so that, from the malware’s perspective,
it appears as though no debugger is attached. Such a
hook is fairly simple and requires low runtime overhead
(indeed, some debuggers used for malware analysis, such
as OllyDbg [72], offer an option to hook this API call).
However, sometimes this is ineffective: other techniques

2. Advanced Persistent Threats are an exception, which we exclude
from consideration.

exist, beyond that single API call, that can be used by
malware to determine the presence of a debugger (e.g.,
isRemoteDebuggerPresent or fields in process control
structures). We could employ one of many strategies to
mitigate this “debugger presence” artifact family:

1) do nothing, risking exposure to samples that invoke
any API calls related to debugger presence;

2) hook one or more API calls within the OS;
3) run in an instrumented virtual machine that does not

directly attach a debugger to the sample; or
4) use a physical machine to preclude exposure.

Strategy (2) is attractive because hooking these API calls
would incur relatively low runtime overhead. However,
hooking API calls like this requires development effort
specific to the platform being used for analysis. Moreover,
deciding to hook API calls may introduce subsequent mech-
anisms for determining the presence of a different artifact.
For example, hooking API calls in Windows requires modi-
fying a process data structure, which could itself be checked
by the malware. Alternatively, we could opt to run the
sample in another environment such as an instrumented
virtual machine (e.g., Ether [18]), but this would incur
more significant runtime overhead, reducing efficiency. In
brief, moving from strategy (1) to strategy (4) increases the
coverage of stealthy malware samples, but at a greater cost.

3.2 Hard Disk Capacity Artifact Family

As a more complex example, many stealthy samples will
check the size of the hard disk. If the hard disk capacity
is below some threshold, the sample may conclude that
it is executing in a resource-constrained virtual machine
for automated analysis. Depending on the guest OS, there
may be a variety of API calls that would, either directly or
indirectly, measure the available hard disk space. Based on
our experience, pafish and some other loaders check for a
threshold of 60GB, and if the hard drive size is less than this
value, they consider it as a potential analysis environment.
An analyzer has several strategies for addressing this “hard
disk capacity” artifact family:

1) do nothing, risking exposure to samples that look for
specific hard drive capacities;

2) hook one or more API calls associated with disk space;
3) externally hook the API call from a hypervisor context,
4) allocate a larger virtual hard disk to a virtual machine

used for malware analysis; or
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Fig. 1. A simplified illustration of our MIMOSA workflow, consists of four
major engines including Covering algorithm, VMCloak [33], Dispatcher,
and Detox.

5) run the sample on a physical machine to preclude
artifact exposure.

Strategy (2) is cheaper in terms of analysis cost, but
requires more effort to research and understand each of the
(potentially many) associated API calls (e.g., in addition to
measuring disk size directly by querying disk information,
a malware sample could write a large amount of data and
check if the OS raises an exception once space is depleted).
On the other hand, strategy (4) requires resources and effort
at runtime, restricting the number of parallel VMs that could
be used for malware analysis. Finally, we could instead
allocate an entire physical analysis machine for the sample,
which would successfully mitigate all artifacts in the disk
space family for the largest subset of malware, but also
inhibits analysis scalability.

These examples show how multiple mitigation strategies
can exist for the same artifact family, how those strategies
can have different costs, and how those strategies can vary
in coverage or effectiveness. However, although we have
thus far presented them in linear lists, the conflicts we
demonstrated mean that a more nuanced representation is
merited. For example, for the debugging presence artifact
family, strategies (3) and (4) conflict and cannot be employed
simultaneously. These observations motivate our adoption
of the lattice data structure (to address coverage and conflict
concerns) and our extension of the covering array algorithm
(to address coverage and cost concerns).

4 PROPOSED WORKFLOW

In this section, we describe the workflow we envision
to support. We seek to make the automated analysis of
stealthy malware more efficient. Current techniques either
rely on human creativity (e.g., debugging with IDA Pro [28]
or OllyDbg [72]) or heavy-weight analysis techniques that
incur significant overhead (e.g., MalT [74] or Ether [18]).
Moreover, differencing approaches, such that of as Balzarotti
et al. [7], execute a sample in multiple instrumented envi-
ronments and use the difference in runs to determine which
artifact is used by the sample, potentially wasting resources.

Given a list of available artifacts, the strategies available
for mitigating them, and a cost model, MIMOSA’s objective
is to select a small set of configurations, which can be de-
ployed in parallel on a given malware sample. That is, given
a fixed number of available servers, each will be configured
to mitigate a different specific subset of artifacts, with lower
total cost, e.g., runtime, to lower analysis latency compared
to existing methods. Once the covering configurations are
identified, MIMOSA deploys each of the configurations as

a separate instance of an instrumented VM. MIMOSA man-
ages the VMs to gather logging information and support
malware analysis.

MIMOSA’s high-level workflow is illustrated in Figure 1
with details given in Figure 2. In Step 1, we apply our
covering algorithm (Algorithm 1), which takes (1) a list of ar-
tifacts, (2) corresponding costs for each artifact (Section 5.1),
and (3) a set of mitigation strategies for each artifact (Sec-
tion 5.2) as input. The algorithm returns a covering set of
configurations for designing and deploying different virtual
machines. Each covering is represented as a vector of bits,
where each element indicates whether that artifact should
be mitigated in the server’s configuration.

The cost model can include a multitude of factors, as
determined by the analyst, including VM run-time, memory
usage, development time of the mitigation, etc. MIMOSA
uses our covering algorithm (Section 5.3) to determine a set
of mitigation configurations for each server in a malware
analysis cluster based on the cost model.

Next, these coverings are realized in a malware analysis
cluster by configuring specific virtual machines. The VM-
Cloak module receives the set of configurations generated
previously and maps VM snapshots to nodes in the cluster.
VMCloak is MIMOSA’s custom VM provisioning and de-
ployment framework. Coverings may entail specific virtual-
ization backends (e.g., QEMU vs. VirtualBox), hooking API
calls, or modifying the guest kernel (e.g., network drivers).

With a configuration established for each server in the
analysis cluster, MIMOSA next allocates samples to servers.
We assume access to a suite of hypervisors and hardware
resources that can be configured a priori to realize the set of
mitigations specified by the covering. As described in Sec-
tion 6.2, we implemented 13 such hypervisor and hardware
configurations (Table 3), managed by our dispatcher module
to spin up and spin down analysis resources as samples are
processed.

Each sample is then executed as a process within each
configuration. As the process runs, MIMOSA collects API
traces and VM state logs through Virtual Machine Introspec-
tion (VMI) and determines heuristically determine whether
the sample is executed successfully. These heuristics are
stored in the Detox engine, which correlates process and VM
execution logs to infer more semantic patterns. In particular,
Detox detects if the process exits, if certain network com-
munication patterns exist, or if certain process names are
created. We conclude that a sample has been executed suc-
cessfully if it runs to termination under each environment.
Section 6 uses well-labeled corpus of stealthy malware to
evaluate MIMOSA’s effectiveness.

5 ALGORITHMIC APPROACH

A key insight of our approach is that efficient analysis of
malware samples must balance two competing factors: the
number of artifacts that are mitigated and the cost of deploy-
ing multiple mitigations. Because stealthy malware uses ar-
tifacts to evade detection, it is desirable to mitigate as many
artifacts as possible to minimize the chance of disclosing to
the sample that it is being analyzed. However, mitigating all
artifacts simultaneously imposes unreasonable costs, so the
goal is to find sets of configurations, where each configuration
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Fig. 2. MIMOSA workflow: In step 1©, we develop a set of known artifacts, a set of known mitigation strategies, and a cost model for each artifact, all
of which serve as input to our algorithm. In step 2©, our covering algorithm generates a set of mitigation configurations for each server in a particular
cluster. Generated configurations are inputs to our VMCloak engine that provisions VMs that mitigate subsets of artifacts. In step 3©, a malware
sample repository, a list of configurations and corresponding VMs are passed to the Dispatcher. In step 4©, the Dispatcher spawns and manages the
analysis of VM instances based on those provisioned by VMCloak. We record API call traces, which are analyzed to inspect and monitor VM state.
In Step 5©, our Detox engine correlates the collected API logs and VMI using heuristics to determine whether the malware sample was detected by
one of the VM instances or not.

is a subset of the available artifact mitigations. The idea
then is that each configuration can be run simultaneously,
will individually be relatively inexpensive to deploy, but
collectively most malware samples will be defeated by at
least one configuration.

Given a set of artifact mitigation strategies (configura-
tions) and a model that assigns a cost to each strategy,
we describe an algorithm for efficiently selecting a set that
maximizes coverage while minimizing cost. At a high level,
there are three main components:

1) The analyst decides on a cost model. Any non-negative
cost function can be used. For example, the model
might include development effort and analysis effi-
ciency, combined linearly to compute a total cost.

2) For each artifact family, each mitigation strategy is
represented as a configuration. Each configuration has
an associated cost, computed via the cost model.

3) The covering algorithm then selects from the many
possible configurations to produce a small set that
optimizes the trade-off between cost and coverage.

We next describe each component in more detail.

5.1 Cost Model

Abstractly, we model cost as a function mapping each
artifact mitigation strategy to R≥0. Our approach operates
regardless of how this cost function is defined, but we
consider, and provide qualitative details for, two exemplar
cost functions: development time and analysis efficiency
(Section 6).

If a mitigation strategy is known (e.g., from a published
paper) but an implementation is not available, the anal-
ysis organization incurs a software development cost to
implement it. Software engineers must be paid to design,

implement, test and deploy the mitigation. A full discussion
of software engineering costs is beyond our scope [27], but
we note that there are many organizations or situations
in which developer time is an expensive, limiting resource
compared to abundant server, cloud, or compute time.

Given an available set of implemented mitigations, a
second cost is the overhead of deploying them. There are
a number of relevant metrics here such as throughput and
energy consumption. Given the rate at which new stealthy
samples are discovered [36], [66] and the costs associated
with zero-day exploits, rapid analysis response is often
paramount. Given a fixed computing budget, if one ap-
proach admits analysis after 100 time units and another ap-
proach only admits analysis after 800 time units, the former
is preferred. For example, consider a scenario in which ten
servers are available. One could deploy heavyweight tools
(such as Ether [18], BareCloud [36], or MalT [74]) on all ten
servers; this would produce a suitable analysis but is not
efficient: it would take a long time for an analysis to run to
completion. Alternatively, one could deploy lighter-weight
systems such as LO-PHI [61] or VMI-based introspection.
This would be more efficient, but risks detection by samples
in the input corpus, at which point the analysis fails.

Note that while more expensive mitigations usually have
higher coverage, this is not always the case. For example, if
a cost model is used that captures only developer-hours,
then the mitigation strategy of hooking API calls is both
more expensive (it requires a developer to write code) and
less effective than using an alternative analysis environment
(which may require little developer time in such a model).

5.2 Selecting Artifacts and Mitigations
First, we enumerated a number of potential artifacts com-
monly used by our corpus of stealthy malware samples
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on Windows systems (Section 6.1). We followed existing
literature [10], [74] and the pafish tool [48] to group these
artifacts into a taxonomy of categories. We consider nine
artifact families for a total of 39 specific artifacts, which
together for a representative sample of indicative behavior
of stealthy malware.

For each artifact, we implemented several mitigation
strategies across a number of hypervisor backends. The
mitigation strategies ranged in complexity from straightfor-
ward scripting (e.g., synthetic mouse movements) to more
complex patches to the hypervisor source code (e.g., to hook
kernel API calls made within the guest). Table 2 lists each
artifacts we considered in our prototype, and the Appendix
shows several example mitigation implementations.

As new artifacts are discovered in the future and ex-
ploited by adversaries, mitigations can be implemented
and added to MIMOSA incrementally. However, our current
implementation includes the artifacts exploited by our rep-
resentative dataset of 1536 manually analyzed stealthy sam-
ples. The cost analysis and coverings construction, however,
generalizes regardless of artifact behavior or exploitation.

5.3 Generating Coverings

Next, we present our algorithm for generating a set of low-
cost covers. Let A = {A1, · · · , An} be the set of n artifacts,
and C = {C1, · · · , Cs} be the set of configurations. Let
S1, · · · , Sp be the set of samples observed. For each sample
Si, we associate with it a set of behaviors B(Si), which is
a subset of the artifacts A. For each configuration Cj , we
associate it with a set of mitigations M(Cj), which is also a
subset of the artifacts A.

Our goal is to construct a binary array (called a cover-
ing), where each of the rows corresponds to a configura-
tion, and each of the columns corresponds to an artifact,
with the following property. For any sample Si, there are
configurations Cj1 , · · · , Cj` for which B(Si) is a subset of
M(Cj1) ∪ · · · ∪ M(Cj`); in other words, for any sample,
there are some configurations that together fully mitigate
the sample. In terms of the array itself, suppose that B(Si)
involves the columns b1, · · · , bm. Then the union of all rows
r in these columns has a 1 in each entry, where 1 in column
bi indicates that configuration r mitigates the artifact bi,
and 0 otherwise. If the property is not maintained, we
generate an array that mitigates as many samples as possible
(high coverage), while also having the cost(s) of the chosen
configurations be as low as possible.

In addition, we maintain a set of desirably high (DH) and
desirably low (DL) characteristics, where each configuration
has a valuation for each of these. For a covering correspond-
ing to a set of configurations, the measure for the covering
of the same characteristic may be the average from each
configuration, the total, or some other measure. For exam-
ple, if the characteristic is measuring the deployment time,
then the total deployment time for a set of configurations
is the total over all of their deployment times. In general,
we want to generate a set of configurations such that the
covering’s DH characteristics are as large as possible, and
the DL characteristics are as low as possible. For the de-
ployment time example, this would be a DL characteristic;
coverage would be a DH characteristic. Because different

TABLE 2
Summary of mitigated artifacts in MIMOSA. We categorize artifacts

according to conceptual similarity.

Artifact Family Mitigation Examples

VM-specific Registry Keys Hook RegOpenKeyEx API
Hook RegQueryValueEx API
Remove offending
keys from guest (e.g.,
HARDWARE\ACPI\DSDT\VBOX__)
Use alternate VM
Run on bare metal

Mouse / Keyboard / Video Detec-
tion

Spoof peripheral input

Replace spoofed driver files (e.g.,
VBoxMouse.sys)
Use higher resolution (e.g.,
>800x600)
Pass through graphics adapter

Internal Timing Hook instructions that read MSRs
Hook GetLastInputInfo API
Hook GetTickCount API
Virtualize time stamp counter
(TSC)
Run on bare metal

Device Properties Spoof device names
Allocate bridged network
Hook Device Query APIs
Hook I/O APIs
Allocate more virtual CPUs
Modify BIOS, system, baseBoard,
chassis, and OEM Strings
Change NIC MAC address
Use alternate VM
Run on bare metal

Drive capacity check Hook CreateFile API
Hook DeviceIoControl API
Hook GetDiskFreeSpaceExA API
Hook WriteFile API
Hook GetDriveTypeA API
Hook GetVolumeInformationA
API
Allocate Large virtual disk
Allocate physical disk

Memory capacity check Hook GlobalMemoryStatusEx
API
Allocate larger VM guest
Run on bare metal

Hooked API detection Externally Hook APIs (e.g., hook
hypercalls)
Use hardware breakpoints
Run on bare metal

Retrieving CPU Vendor Name Patch VMM
Change VM config
Run on QEMU full system emula-
tion

Process / Drive Name Detection Patch VMM
Change VM config
Run on QEMU full system emula-
tion

Invalid Instruction Behavior Patch VMM
Use alternate VM
Run on bare metal
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characteristics can have different impacts on a system, we
aim to produce a collection of coverings such that none of
them “overshadow” any other one.

Next, we walk through the algorithm. First, we will
discuss generating a covering of all the considered con-
figurations and artifacts relevant for any sample. For each
configuration and artifact, we mark whether or not the
configuration mitigates the artifact; the array correspond-
ing to the covering is the natural one. We determine the
cost and coverage of each configuration in turn. Next, we
generate all subsets of configurations; suppose these subsets
are S1, · · · , Sk. We say that a subset of configurations Si

dominates another subset Sj if the following properties hold:

• Si’s DH characteristics are all at least those of Sj ,
• Si’s DL characteristics are all at most those of Sj , and
• either (1) some DH characteristic of Si is strictly larger

than that of Sj , or (2) some DL characteristic of Sj is
strictly smaller than that of Sj .

The Pareto front of the subsets is the collection of subsets
S such that none of the subsets dominates any other in S ,
which can be found by non-dominated sorting [15].

This algorithm is not efficient because it examines every
subset, which takes exponential time in the number of
configurations. We give an optimization that improves the
running time in practice, contingent on the following as-
sumption. Suppose that all of the DH and DL characteristics
(other than coverage) are monotonic, which means that if
a new configuration c is added to a set of configurations
S , then S ∪ {c} cannot have larger DH characteristics nor
smaller DL characteristics than those of S . For example,
adding a configuration does not decrease the total deploy-
ment time, so this is a monotone DL characteristic. Note that
coverage as defined here is always monotone.

Let Ai be all subsets of size i, and suppose all non-
coverage characteristics are monotone. Let ai be a subset
in Ai, and let c be any configuration not in ai. If the
coverage of ai ∪ {c} is more than ai, then we need to
observe some subset in Ai+1 (because ai ∪ {c} is one such
subset). However, if the coverage does not increase for any
subset in Ai with any new configuration c, then we can
terminate the algorithm because (1) the coverage does not
increase, and (2) the characteristics are monotone. We give
a more detailed description in Algorithm 1. In practice, all
of the characteristics we have used are monotone, and the
algorithm benefits because most configurations in the Pareto
frontier had fewer than four configurations, a significant
improvement over the brute-force strategy. We present and
discuss various points of Pareto frontiers derived from this
algorithm in Section 6.

An advantage of our algorithm is that it is highly likely
that a configuration will cover the artifacts employed by
any observed sample. The construction of Algorithm 1
produces minimal subsets of configurations (i.e., deleting
any configuration from any subset will cause coverage to
decrease). Indeed, as demonstrated in Section 6, most of the
points found on the Pareto frontier involved a very small
number of configurations.

Algorithm 1: Pareto Generation of Configurations
via Coverings when the characteristics are mono-
tone.

Generate the covering C with rows R as
configurations, and columns as (monotone)
characteristics.

PreviousCoverage← ∅. PointsToConsider← ∅.
for i = 1 to |R| do

NewCoverage← ∅.
for each subset S of size i of R do

Add the coverage of S to NewCoverage, and
both the coverage and costs of S to
PointsToConsider.

Call the parent of S to be every subset of S of
size |S|-1 (i.e., deletion of a single element).

end
if the coverage of each subset in NewCoverage is the
same as its parents in PreviousCoverage then

Exit this loop.
end
else

PreviousCoverage← NewCoverage.
end

end
Output the Pareto frontier of PointsToConsider
using non-dominated sorting.

6 EMPIRICAL EVALUATION

MIMOSA adapts coverings to choose artifact mitigation
strategies that enable the accurate and rapid analysis of
stealthy malware that would otherwise take significant ef-
fort to analyze and understand. In this section, we present
results from two empirical evaluations of MIMOSA.

We begin by introducing an indicative use case (see
Section 4). Consider an enterprise that desires to use a
set of servers with finite capacity for automated malware
classification and triage. We assume that low-latency anal-
ysis of stealthy samples is paramount: given a fixed set
of computing resources, we want the analysis of a given
sample to complete as quickly as possible (e.g., to sup-
port subsequent human analysis, defense creation, signature
generation, etc.). We further assume that the input samples
are stealthy, and the analysis tool must mitigate the artifacts
exposed to each sample to prevent subversion. Although it
might be possible to use all servers available to the enter-
prise to mitigate all potential artifacts, this is not an efficient
use of resources and does not provide the lowest analysis
latency. Instead, we apply our algorithm to determine which
sets of artifacts are to be mitigated by each server. This
minimizes the latency of analyzing each sample across all
available servers while maximizing the combined analysis
power of all available servers.

To evaluate our approach, we consider three research
questions:

RQ1 Coverage — Does MIMOSA produce artifact mitiga-
tion configurations that effectively covers stealthy mal-
ware samples?

RQ2 Scalability — Does MIMOSA produce artifact mit-
igation configurations that admit low-cost, high-
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Fig. 3. Distribution of malware samples in our dataset according to the
number of unique artifacts employed. For example, more than 600 of our
1535 samples employed a single artifact. The graph is not cumulative.

throughput automated stealthy malware analyses?
RQ3 Efficiency — What tradeoffs exist in the resource

costs and coverage space among the configuration sets
produced by MIMOSA?

We first discuss the corpus of malware we used in our
evaluation. Then, we discuss each research question in turn.

6.1 Malware Corpus Selection

We consider stealthy malware that targets Windows. Of the
many available malware corpora, only a few focus directly
on stealthy malware, in part because they are so difficult
to analyze automatically. We studied two of these in detail
(BareCloud [36] and an anonymous security company) and
found that they the labels were inadequate for our purpose
because they did not label the specific artifacts used by each
sample. A sample might be labeled “device id detection,”
for example, rather than listing the specific device it checked
for. Instead, we obtained a set of 1535 unique samples
from independent security researchers, which are analyzed
according to the artifacts they use. This dataset consists
only malware samples that have been manually identified as
stealthy and curated precisely. Other work has used larger
malware databases for similar experiments [8], [13], but as
mentioned above these datasets are not labeled with enough
specificity for our study.

Figure 3 shows that each individual malware sample in
our corpus uses between one and five evasion techniques,
thus confirming our hypothesis that most malware consid-
ers only a few artifacts and supporting our design decisions
for MIMOSA. In addition, we show a taxonomy of malware
families in our corpus in Figure 4.

We categorized the samples based on the artifacts they
are looking for in the system, summarized in Figure 5.
Among these artifacts, checking for BIOS and SCSI device
metadata were common. Additionally, many of our samples
checked for the existence of specific processes (e.g., helper
programs for in-guest clipboard access, video acceleration,
etc.). We categorized which specific process was used by
each stealthy malware sample, shown in Figure 6. In partic-
ular, Xen service (xenservice.exe) is the most frequently-
checked process among other processes used.

TR/AD.BetaBot.Y
1.1%
AD.Amonetize.Y
1.5%
TR/AD.Qbot.Y
2.3%
TR/AD.Bulta.Y
1.6%
TR/AD.Yakes.Y
1.7%

TR/AD.Nymaim.Y
17.1%

PUA/AD.InstallCore.B
7.5%

TR/AD.Lethic.B
41.7%

TR/AD.LoadMoney.B
5.6%

W32/AD.Ramnit.B
1.6%

TR/AD.Beebone.Y
0.2%

Fig. 4. Taxonomy of malware samples contained in the corpus, which
includes samples of several popular families such as Lethic (Trojan), Ny-
maim (Trojan), and InstallCore (Potentially Unwanted Program (PUA)).

HCI
4.3%
HDD_SIZE
5.8%
DRIVER_CHECK
2.7%
SCSI_CHECK
14.8%

BIOS
23.8%

DEBUGGER_PRESENT
12.3%

RDTSC
8.0%

MEM_SIZE
4.7%

TICK_COUNT
5.3%

PROCESS_DETECTION
16.2%

Fig. 5. Frequency of artifacts detected by samples in the malware
dataset.

6.1.1 Pafish

In addition, we used pafish [48], an open source tool that
enumerates common checks used by stealthy malware, to
determine whether a given configuration could provide
coverage over specific artifacts. Pafish is well-suited to this
task because it can be configured to check or ignore specific
artifacts. We used pafish to confirm the sets of artifacts
mitigated by each configuration before we applied each
configuration to malware samples in our dataset.

Virtual PC
1.3%
VirtualBox
7.6%
VMware
7.2%
Sandboxie
17.5%

Xen
66.5%

Fig. 6. Distribution of process names checked for by stealthy malware.
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Fig. 7. Success and failure counts for each tested configuration, when run against the 1535 stealthy malware samples.

6.2 RQ1: Coverage — Artifact Mitigation

In this experiment, MIMOSA assigns artifact mitigation
strategies to analysis servers. We say that the configuration
set size is the number of configurations combined together
— this is an input parameter that represents the number
of distinct configurations that the user is willing to run
concurrently. For example, if more servers are available for
analysis, a larger configuration set size can be selected. We
say that a stealthy malware sample is successfully analyzed
if at least one configuration in the configuration set pro-
duced by MIMOSA mitigates all of the artifacts it uses.

For each configuration, we represent artifact coverage as
a bit-array in which each set bit implies that that particular
artifact has been successfully mitigated in the environment.
Table 3 gives details about each configuration instance.

We use VMWare, VirtualBox, KVM, and QEMU back-
ends for virtualizing guests to complete an analysis of each
sample. We use 13 different configurations across each of
these backends for conducting analyses. Each configuration
implements a subset of mitigations against each class of ar-
tifacts. For example, the qemu patched conf1 contains inten-
tionally low RAM size (< 1GB), exposing the RAM detec-
tion family of artifacts, but also contains custom patches that
remove all QEMU-related hardcoded strings throughout the
source. In contrast, the VMWare conf2 configuration em-
ploys the VMWare Tools suite for faster execution, exposing
process names (i.e., of VMWare Tools). Broadly, we designed
and implemented these configurations by considering the
families of artifacts exposed by our dataset (Section 6.1) and
the expected complexity in mitigating each artifact family
across each virtualization backend.

We compute whether at least one configuration covers
each evasive sample by analyzing traces of API call invo-
cations, including arguments passed to each call and the
corresponding output. We developed a module (“Detox”

engine in Figure 2) to wrap and unify multiple Virtual
Machine Introspection (VMI) APIs, including Icebox [3],
PyReBox, DRAKVUF [39], and VMWare VProbes [69]. Thus,
we collect multiple API trace logs for each sample for each
configuration, based on the virtualization backend used.
Next, we aggregate these API trace logs to bridge the se-
mantic gap [29], [57]: doing so allows reconstructing higher
abstraction API traces invoked against the guest OS.

Given each trace of each sample, we confirm detection
results based on the malware’s behavior across all configu-
rations. Specifically, we follow the malware execution trace
up to the point when it starts to create, manipulate, or
remove a memory section, segment, or page using APIs
such as NtCreateSection, NtMapViewOfSection, or
NtSetContext. Then, we compare these results against
ground truth established in our corpus to ensure that the
malicious process executed completely. If the analysis dif-
fers from the ground truth (e.g., if the sample detects the
environment and hides its behavior), we say that configu-
ration does not cover the sample. If there exists at least one
configuration that does cover the sample, we call that sample
covered. We show the detection rate of each configuration
across our entire corpus of malware in Figure 7.

6.2.1 RQ1 Result Summary
Our mitigation strategies and corresponding configurations
provide varying coverage levels across an indicative dataset
of 1535 stealthy malware samples, allowing us to explore
the trade-off space between coverage provided by analysis
tools and the cost of deploying those tools or acquiring
analyses. In Figure 8, we show a the level of coverage
achieved by our approach compared to other approaches
versus configuration set size. Specifically, we measure the
coverage achieved by a set of configurations of a specific size
for (1) Random — a randomly-generated coverage vector,
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TABLE 3
List of tested configurations and the artifacts they mitigate. Each column corresponds to whether a specific category of artifact is mitigated in that
configuration. Note that some configurations support different backend (e.g., qemu legacy conf1 can be run in both KVM and QEMU), yielding

differing artifact mitigations.

Index Backend Configuration Process Debugger CPUID RDTSC CPU # Invalid Inst. TickCount HCI BIOS File Check HDD - SCSI Disk size Memory MAC ACPI

1 KVM qemu patched conf1 X X – – X X – X X – – – – X X
2 qemu patched conf2 X X – – X X – X X – X – X – X

3
VMWare

vmware conf3 X X – – X X – X X – – – – X X
4 vmware conf2 X X – – – – – X – X – – X – X
5 vmware conf2 vmtools – X – – X – – X – – – – X – X

6 KVM qemu legacy conf1 X X – – X X – X X X – – X X X
7 qemu legacy conf2 X X – – – X – X X X – – – – X

8

Virtualbox

vbox conf1 guestadditions – X – – – X – X X – X X – – –
9 vbox conf2 guestadditions – X – – X X – X – – X X – X X

10 vbox conf1 X X X – X X – X X X X X X – –
11 vbox conf2 X X – – – X – X – X X X – X –

12 QEMU qemu legacy conf1 X X X X X X X X X X X – – X X
13 qemu legacy conf2 X X X – X X – X X X X – X – X
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Fig. 8. Proportion of stealthy malware samples covered for differ-
ent configuration set sizes for various techniques. Random indicates
a randomly-generated coverage vector. Semi-random represents a
randomly-selected subset of our 13 configurations. King-of-the-Hill rep-
resents the best single configuration from our set of 13. Our approach
achieves higher levels of coverage compared to the best available single
configuration.

(2) Semi-random — a randomly-selected configuration from
our set of 13 configurations (shown in Table 3), (3) King-
of-the-Hill (KoTH) — the best single configuration from
our set of 13 configurations, and (4) MIMOSA, the set of
configurations selected by our approach. For this set of
experiments, we averaged 10 trials.

We view KoTH as the baseline for automated malware
analysis systems that do not use our approach (e.g., compa-
nies that pick the “best” sandbox they can, and scale it up to
multiple machines in a cluster). Our approach achieves 97%
coverage when combining five configurations, compared
to KoTH, which achieves 65% coverage. This suggests our
approach can generate configurations of malware analysis
environments that can apply to most stealthy malware
samples in an indicative corpus.

6.3 RQ2: Scalability — Automated Analysis
We also evaluated our approach with respect to malware
analysis throughput. Because our approach also considers
the relative costs (e.g., overhead, disk utilization) of each
configuration, we can measure our system’s effectiveness at
scale. For example, if a given configuration does not cover a

given sample, that configuration wastes time and resources
attempting to execute that sample. Thus, we can compute
the amount of resources wasted by considering the total
resources consumed by configurations executing samples
that were not covered by those configurations.

We measure the time wasted by a configuration using
virtual machine introspection (VMI) to reconstruct events
that occur within each configuration guest environment
from low-level execution traces collected for each sample.
We compared these execution traces against ground truth
execution traces gathered for each sample (provided as
part of our malware dataset). Each sample’s collected and
ground truth traces were compared using the trace merging
algorithm introduced by Virtuoso [20], VMWatcher [31], and
VMWare VProbes [69]. For each sample in each configura-
tion, we report the time t at which the measured and ground
truth traces diverged — where a sample’s anti-analysis
technique caused the execution to differ from the ground
truth. If the traces never diverge, then we conclude the
sample was covered. Thus, for each uncovered sample and
configuration, we report the time wasted as the difference
between time t and some maximum timeout (configured as
2s here; state-of-the-art typically uses 5s timeouts [39]).

Figure 9 shows a comparison of time wasted of various
approaches versus configuration set size, as described in
Section 6.2.1. Our approach spends 3X less CPU time ex-
ecuting samples that are not covered by configurations. As a
result, our approach can scale analysis of malware samples
3X over state-of-the-art by accurately analyzing a higher
proportion of samples in less time.

6.4 RQ3: Efficiency — Analysis Tradeoffs
In this section, we consider tradeoffs between analysis re-
source cost and stealthy malware sample coverage. Recall
that a stealthy malware sample is covered if all of the artifacts
it uses are mitigated. We evaluate coverage with respect to
two cost functions: memory utilization and disk throughput.
Both are relevant for scalable automated malware analysis.

We analyzed each of the 1535 stealthy malware samples.
For each sample, we determined which set of configurations
would mitigate the artifacts used by that sample, then mea-
sured how much of a resource was used during that sam-
ple’s execution. In particular, we measured disk throughput
(bytes per second) and memory utilization (approximated
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Fig. 9. Average analysis time wasted executing each sample for sets
of different configuration sizes. Random refers to a randomly-generated
coverage vector. Semi-random refers to a random subsets of our 13
configurations. King-of-the-Hill represents the best single configuration
selected from our 13 configurations. Our approach wastes the least
amount of time failing to execute stealthy samples, enabling higher
automated analysis throughput.

by measuring average free bytes during execution). We used
MIMOSA to generate a Pareto front by considering which
subsets of configurations would require which levels of
resource to achieve a particular degree of coverage.

Table 4 shows the Pareto front and indicative points
for the memory utilization cost function. As an exam-
ple, the point with the highest coverage (i.e., 1432 out of
1535 samples analyzed successfully) required an average
of 718MB during execution, while the configurations with
lower coverage (e.g., 1020 samples) used only 316MB of
memory. Overall, this graph shows how to balance the
tradeoff between malware analysis tool configurations with
respect to memory usage.

Similarly, Table 5 show the Pareto front for the disk
throughput cost function. As before, there is a tradeoff
between how many samples are covered and the disk usage
is required to obtain analyses per sample.

6.5 RQ3 Tradeoffs Summary
MIMOSA enables finding a Pareto-optimal point that pro-
vides accurate stealthy malware analyses while minimizing
the resource allocation required to obtain those analyses.

7 DISCUSSION

In this section, we discuss (1) potential threats to the validity
of the experimental results, (2) using MIMOSA for control-
ling an adaptive malware analysis system, and (3) potential
future improvements that can be made to cost functions.

7.1 Threats to Validity
First, we characterized artifact families according to concep-
tual similarity. The artifact families ultimately inform what
structure the corresponding covering takes. There is no stan-
dard method for classifying artifacts in this manner—the
effectiveness or utility of MIMOSA could change depending
on the specific assumptions we made about which artifacts
are categorically similar.

TABLE 4
Indicative points in the Pareto front comparing samples covered with

memory utilization.

Samples Avg. Available
Configuration Set Covered Memory(MB)

vbox conf2

1432 718

vbox conf1
qemu legacy conf1
qemu patched conf1
vmware conf3
qemu legacy conf2
qemu legacy conf1
vbox conf2 guestadditions
vbox conf1 guestadditions

vmware conf3 1020 316

TABLE 5
Indicative points in the Pareto front comparing samples covered with

disk throughput.

Samples Avg. Disk Write
Config Set Covered (KBytes/sec)

vbox conf1
1432 397qemu legacy conf1

qemu legacy conf2

qemu legacy conf2 1044 209

Second, our experimental approach for RQ2 measured
execution time only while the sample was actively execut-
ing. In practice, there are other considerations that have
impact on the overall efficiency of malware analysis (e.g.,
restoring clean virtual disks, reloading the OS image, etc.).

Third, although our evaluation incorporated 1535
stealthy malware samples from the wild, we produced
configurations whose costs were measured in isolation (e.g.,
we measured CPU utilization separately from memory uti-
lization). Additional engineering effort is required to con-
struct a production-quality end-to-end system that uses the
configurations produced by MIMOSA to apply to a real set
of hardware.

7.2 Remarks on Adaptability
MIMOSA takes as input a set of modeled mitigation
strategies and associated costs, and it produces as output
a coverage-optimal, low-heuristic-cost array of strategies.
This approach can be extended to adapt over time to
changes in the distribution of stealthy malware. For exam-
ple, if new artifacts are discovered or if the costs associated
with mitigating each one changes with technology, our
overall approach and algorithms will still be applicable as a
tool for finding cost-optimal analysis configurations.

As a specific example, recent work leveraged “wear
and tear” of virtual machine environments [46]. In essence,
malware samples can look for evidence that an environment
is “aged.” An analyst that spins up a vanilla VM image may
fall victim to a sample that detects if the environment is pris-
tine and newly-created. That is, the perceived “age” of the
virtualized environment is the artifact. Malware campaigns
like Dyre and Dridex use heuristics like (1) investigating the
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clipboard for evidence of random strings associated with
normal use, and (2) registry keys to track historical use
of common prorgrams (e.g., Microsoft Word). We do not
include such artifacts in our prototype coverage calculation
because our dataset did not contain samples that exploited
wear and tear artifacts; however, they can be readily incor-
porated by implementing a corresponding mitigation. For
example, our prototype currently moves random files to
the Desktop, Recycle bin, and Temp directories, and it also
injects decoy entries in the Registry. We could introduce this
as a full mitigation in our framework: the coverings vector
would be augmented to reflect this new artifact so that it is
covered in the optimally-generated configurations.

7.3 Remarks on Cost Functions

MIMOSA currently considers optimizing for cost, which
can be captured in several ways: CPU utilization, memory
utilization, and runtime overhead with respect to latency.
However, these one-dimensional approaches may admit
coverings that are difficult to interpret. For example, in
a cluster of 10 servers, assigning nine servers to do no
mitigation (minimal cost) and one server to run bare metal
(maximal coverage) is a well-formed solution.

We also discussed a second parameter that captures
benefit: coverage of stealthy malware samples is important
for acquiring faithful, interpretable analyses. For example,
if we know a mitigation strategy will cover 90% of stealthy
malware, we may be willing to pay a higher cost to use
that strategy because of its overall coverage. On the other
hand, a strategy that only covers 2% of stealthy malware in
the wild may be disregarded. While we examined the cost-
benefit space in our evaluation, future work will include a
multidimensional heuristic search to find optimal coverings
with respect to more complex cost functions.

8 RELATED WORK

Various projects have focused on detecting and evading
analysis systems in both x86 executables [12], [53], [54], [56]
and mobile devices (e.g., Android [32]). In this section, we
discuss this work in three categories: (1) malware detection
using behavioral analysis, (2) malware analysis using vir-
tual machine infrastructure, and (3) malware analysis using
bare-metal machines.

8.1 Stealthy Malware Detection

Current stealthy malware analysis techniques generally
rely either on human creativity (e.g., debugging with IDA
Pro [28] or OllyDbg [72]) or heavy-weight analysis tools
that incur significant overhead (e.g., MalT [74] or Ether [18]).
Moreover, differencing approaches, such that of as Balzarotti
et al. [7], work by executing a sample in multiple instru-
mented environments and use the difference in runs to
determine which artifact is used by the sample, potentially
wasting resources.

Balzarotti et al. [7] demonstrate the ability to detect
evasive behaviors by running malware in various runtime
environments and comparing their system calls. Lindorfer
et al. [41] later employed a similar technique, but used

various malware sandboxes and scored their evasive behav-
iors. HASTEN [37] specifically focuses on stalling malware,
which is a particularly difficult evasion technique to analyze
because the malware appears benign for an extended period
of time. TriggerScope [25] similarly examines Android pro-
grams which mask there malicious behavior until a certain
trigger is observed. Our technique leverages a combination
of multiple environments that separately mitigate different
artifact families, instead providing environments that are
more likely for the sample to execute faithfully.

Our approach is conceptually related to SLIME [14], an
automated tool for disarming anti-sandboxing techniques
employed by stealthy malware. SLIME runs a sample many
times, each time configuring the environment to explic-
itly expose certain artifacts to the sample. In contrast, our
approach seeks to minimize the total cost of execution
(or the resources consumed) to either identify or analyze
the sample under test. In addition, we introduce a novel
structure called a covering that helps identify the optimal
configuration for an analysis system.

8.2 Virtual Machine Analysis

Ether [18] is a malware analysis framework based on
hardware virtualization extensions (e.g., Intel VT). It runs
outside of the guest operating systems, in the hypervisor,
by relying on underlying hardware features. BitBlaze [58]
and Anubis [4] are QEMU-based malware analysis systems.
They focus on understanding malware behavior, instead
of achieving better transparency. V2E [71] combines both
hardware virtualization and software emulation. Hyper-
Dbg [24] uses the hardware virtualization that allows the
late launching of VMX modes to install a virtual machine
monitor, and run the analysis code in the VMX root mode.
SPIDER [17] uses Extended Page Tables to implement in-
visible breakpoints and hardware virtualization to hide its
side-effects. DRAKVUF [39] is another VMI-based system
capable of both user and kernel-level analysis.

We note that recent work has investigated changes to
the sandboxing environment to give it the appearance of
age or use [46]. For example, a dearth of Documents,
Downloads, event logs, or installed software could be a
hint that the sample is not executing in a real, vulnerable
environment. Although our current prototype does not ad-
dress samples exhibiting such “age” checks, as discussed
above, we could readily incorporate it. As with other new
or yet-undiscovered artifacts, our overall framework would
not change. One would simply implement a configurable
mitigation against that new artifact and include it as a
strategy used by our coverings algorithm.

8.3 Bare-metal Analysis

BareBox [35] is a malware analysis framework based on
a bare-metal machine without any virtualization or emu-
lation techniques, which is used for analyzing user mode
malware. Follow up work, BareCloud [36], uses mostly un-
instrumented bare-metal machines, and is capable of ana-
lyzing stealthy malware by detecting file system changes.
Willems et al. [70] propose a method for using branch
tracing, implemented on a physical CPU, to analyze stealthy
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malware. LO-PHI [60] is a system capable of both live mem-
ory and disk introspection on bare-metal machines, which
can be used for analyzing stealthy malware. MalT [74]
uses System Management Mode to instrument a bare-metal
system at the instruction level, exposing very few artifacts
to the system. While LO-PHI and MalT both have high
deployment overheads, they also expose very few artifacts
to samples under test; thus, either could conceptually serve
as our highest coverage (and highest cost) configuration.

9 CONCLUSION

Stealthy and obfuscated malware is expanding rapidly. As
the security arms race continues, malware authors use in-
creasingly sophisticated techniques to subvert analysis. The
large volume of new malware released every year makes
automated analysis increasingly mandatory to identify and
understand new malware samples. Techniques to address
the volume of stealthy malware are critical.

In this paper, we introduced coverings, a novel way
of representing the problem of analyzing stealthy malware
efficiently, and a prototype implementation called MIMOSA.
We studied a broad set of artifacts exposed by analysis envi-
ronments and the mitigation strategies required to prevent
malware samples from using those artifacts to subvert detec-
tion. We modeled the mitigations using a partially ordered
structure according to the number of artifacts mitigated
and the cost associated with deploying that strategy. We
developed 32 such mitigation strategies. We presented an
algorithm that finds the lowest-cost selection of mitigation
strategies to implement while guaranteeing a total coverage
of the artifacts. Finally, we empirically evaluated MIMOSA
using 1535 stealthy malware samples from the wild. We
found that MIMOSA can find mitigation strategies that re-
duce the overhead and memory utilization associated with
mitigating all artifacts considered.
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